Photocatalytic Formic Acid Conversion on CdS Nanocrystals with Controllable Selectivity for H2 or CO**

نویسندگان

  • Moritz F Kuehnel
  • David W Wakerley
  • Katherine L Orchard
  • Erwin Reisner
چکیده

Formic acid is considered a promising energy carrier and hydrogen storage material for a carbon-neutral economy. We present an inexpensive system for the selective room-temperature photocatalytic conversion of formic acid into either hydrogen or carbon monoxide. Under visible-light irradiation (λ>420 nm, 1 sun), suspensions of ligand-capped cadmium sulfide nanocrystals in formic acid/sodium formate release up to 116±14 mmol H2 g(cat)(-1) h(-1) with >99% selectivity when combined with a cobalt co-catalyst; the quantum yield at λ=460 nm was 21.2±2.7%. In the absence of capping ligands, suspensions of the same photocatalyst in aqueous sodium formate generate up to 102±13 mmol CO g(cat)(-1) h(-1) with >95% selectivity and 19.7±2.7% quantum yield. H2 and CO production was sustained for more than one week with turnover numbers greater than 6×10(5) and 3×10(6), respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production

Solar-driven photocatalytic conversion of CO2 into fuels has attracted a lot of interest; however, developing active catalysts that can selectively convert CO2 to fuels with desirable reaction products remains a grand challenge. For instance, complete suppression of the competing H2 evolution during photocatalytic CO2-to-CO conversion has not been achieved before. We design and synthesize a spo...

متن کامل

Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H2 evolution.

We report the development of a highly efficient photocatalytic system by immobilizing high-quality CdS quantum dots and dendritic Pt nanocrystals on thiol-functionalized graphene substrates. We have demonstrated that the use of QDs with compact sizes leads to a dramatically enhanced performance in comparison with their bulk counterparts. Our design allows for systematic examination of the impac...

متن کامل

High photocatalytic activity in nitrate reduction by using Pt/ZnO nanoparticles in the presence of formic acid as hole scavenger

In this work, the photocatalytic reduction of nitrate in water was examined using zinc oxide loaded with platinum nanoparticles and formic acid as a hole scavenger (electron donor). The data obtained in the structural characterization and in the nitrate photoreduction experiments showed that 1wt% Pt/ZnO photocatalyst had the highest photocatalytic activity and selectivity toward nitrogen. Selec...

متن کامل

Decoration of size-tunable CuO nanodots on TiO2 nanocrystals for noble metal-free photocatalytic H2 production.

We report a simple yet effective approach for the decoration of the TiO2 nanocrystal surface with size-tunable CuO nanodots for high-performance noble metal-free photocatalytic H2 production. Modification with polyacrylic acid enables the surface of TiO2 nanocrystals to be selectively deposited with Cu(OH)2 nanodots, which can be subsequently converted to CuO through dehydration without changin...

متن کامل

Microwave Assisted Synthesis of Nano Zeolite Seed for Synthesis Membrane and Investigation of its Permeation Properties for H2 Separation

MFI-type zeolite membranes (ZSM-5) were prepared on α-alumina tubular supports and tested for separation of H2/CO mixtures. The effect of pressure and temperature on H2 and CO flows and selectivity was investigated. The best results in this work were obtained with a ZSM-5 membrane prepared over a porous α-alumina tube seeded with zeolite nanocrystals synthesized with m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2015